Friedrich Wöhler (July 31, 1800, in Eschersheim near Frankfurt am Main - September 23, 1882, in Göttingen) was a German chemist.

In 1823 Wöhler finished his study of medicine in Heidelberg at the laboratory of Leopold Gmelin, who arranged for him to work under Jöns Jakob Berzelius in Stockholm. Between 1825 and 1831, Wöhler taught and worked in Berlin.

Wöhler is regarded as a pioneer in organic chemistry as a result of his (accidential) synthesizing urea in 1828. Urea synthesis was integral for biochemistry because it showed that a compound known to be produced only by biological organisms could be produced in a laboratory, under controlled conditions, from inanimate matter. This in vitro synthesis of organic matter disproved a common theory (vitalism) about vis vitalis, a transcendent "life force" needed for producing organic compounds. In the year of his urea synthesis, Wöhler became professor at the age of 28.

Wöhler was also a co-discoverer of beryllium and silicon, as well as the synthesis of calcium carbide, among others.


To be merged : Friedrich Wöhler (July 31, 1810-1882) German chemist born, July 31, 1800,

at Eschersheim, near Frankfort-on-the-Main.

He taught chemistry from 1825 to 1831 at the Polytechnic School in Berlin; then till 1836 he was stationed at the Higher Polytechnic School at Cassel, and then he became Ordinary Professor of Chemistry in the University of Göttingen, where he remained till his death.

Until the year 1828 it was believed that organic substances could only be formed under the influence of the vital force in the bodies of animals and plants. It was Wöhler who proved by the artificial preparation of urea from inorganic materials that this view could not be maintained. This discovery has always been considered as one of the most important contributions to our scientific knowledge. By showing that ammonium cyanate can become urea by an internal arrangement of its atoms, without gaining or losing in weight, Wöhler furnished one of the first and best examples of isomerism, which helped to demolish the old view that equality of composition could not coexist in two bodies, A and B, with differences in their respective physical and chemical properties. Two years later, in 1830, Wöhler published, jointly with Liebig, the results of a research on cyanic and cyanuric acid and on urea. Berzelius, in his report to the Swedish Academy of Sciences, called it the most important of all researches in physics, chemistry, and mineralogy published in that year. The results obtained were quite unexpected, and furnished additional and most important evidence in favor of the doctrine of isomerism. In the year 1834, Wöhler and Liebig published an investigation of the oil of bitter almonds. They prove by their experiments that a group of carbon, hydrogen, and oxygen atoms can behave like an element, take the place of an element, and can be exchanged for elements in chemical compounds. Thus the foundation was laid of the doctrine of compound radicals, a doctrine which has had and has still the most profound influence on the development of chemistry--so much so that its importance can hardly be exaggerated. Since the discovery of potassium by Davy, it was assumed that alumina also, the basis of clay, contained a metal in combination with oxygen. Davy, Oerstedt, and Berzelius attempted the extraction of this metal, but could not succeed. Wöhler then worked on the same subject, and discovered the metal aluminum. To him also is due the isolation of the elements yttrium, beryllium, and titanium, the observation that silicium can be obtained in crystals, and that some meteoric stones contain organic matter. He analyzed a number of meteorites, and for many years wrote the digest on the literature of meteorites in the _Jahresbericht der Chemie_; he possessed, perhaps, the best private collection of meteoric stones and irons existing. Wöhler and Sainte Claire Deville discovered the crystalline form of boron, and Wöhler and Buff the hydrogen compounds of silicium and a lower oxide of the same element. This is by no means a full statement of Wöhler's scientific work; it even does not mention all the discoveries which have had great influence on the theory of chemistry. The mere titles of the papers would fill several closely-printed pages. The journals of every year from 1820 to 1881 contain contributions from his pen, and even his minor publications are always interesting. As was truly remarked ten years ago, when it was proposed by a Fellow of the Royal Society that a Copley Medal should be conferred upon him, "for two or three of his researches he deserves the highest honor a scientific man can obtain, but the sum of his work is absolutely overwhelming. Had he never lived, the aspect of chemistry would be very different from that it is now."

While sojourning at Cassel, Wöhler made, among other chemical discoveries, one for obtaining the metal nickel in a state of purity, and with two attached friends he founded a factory there for the preparation of the metal.

Among the works which he published were "Grundriss der Anorganischen Chemie," Berlin, 1830, and the "Grundriss der Organischen Chemie," Berlin, 1840. Nor must we omit to mention "Praktischen Uebringen der Chemischen Analyse," Berlin, 1854, and the "Lehrbuch der Chemie," Dresden, 1825, 4 vols.