The word "modem", a portmanteau word constructed from "modulator" and "demodulator", refers to a device that modulates an analog "carrier" signal (such as sound), to encode digital information, and that also demodulates such a carrier signal to decode the transmitted information. The goal is to produce a signal that can be transmitted easily and decoded to reproduce the original digital data. Primarily used to communicate via telephone lines, modems can be used over any means of transmitting analog signals, from driven diodes to radio.

Table of contents
1 History
2 Description
3 Internet access
4 See also

History

Modems were first introduced as a part of the SAGE air-defense system in the 1950's, connecting terminals located at various airbases, radar sites and command-and-control centers to the SAGE director centers scattered around the US and Canada. SAGE ran on dedicated communications lines, but the devices at either end were otherwise similar in concept to today's modems. IBM was the primary contractor for both the computers and the modems used in the SAGE system. A few years later a chance meeting between the CEO of American Airlines and a regional manager of IBM led to a "mini-SAGE" being developed as an automated airline ticketing system. In this case the terminals were located at ticketting offices, tied to a central computer that managed availability and scheduling. The system, known as SABRE, is the distant parent of today's SABRE system.

By the early 1960s commercial computer use had bloomed, due in no small part to the developments above, and in 1962 AT&T released the first commercial modem, the Bell 103. Using frequency-shift keying, where two tones are used to represent the 1's and 0's of digital data, the 103 had a transmission rate of 300 bit/s. Only a short time later they released the Bell 212, switching to the more reliable phase-shift keying system and increasing the data rate to 1200 bit/s. The similar Bell 201 system used both sets of signals (send and receive) on 4-wire leased lines for 2400 bit/s operation.

The next major advance in modems was the Hayes Smartmodem, introduced in 1981 by Hayes Communications. The Smartmodem was a simple 300 bit/s modem using the Bell 103 signaling standards, but attached to a small controller that let the computer send commands to it to operate the phone line. Prior to the introduction of the Smartmodem modems had almost universally been setup and connected "by hand", evolving eventually to devices with two rubber cups on top into which a standard phone handset was inserted after dialling. With the Smartmodem the computer itself could dial the phone, a development required for developing a BBS.

Modems stayed at about these rates unto the 1980s. A 2400 bit/s system very similar to the Bell 212 signalling was introduced in the US, and a slightly different, and incompatible, one in Europe. By the late 1980s most modems could support all of these standards, and 2400 bit/s was becoming common. A huge number of other standards were also introduced for special-purpose situations, commonly using a high-speed channel for sending, and a lower-speed channel for receiving. One typical example was used in the French Minitel system, where the user's terminals spent the majority of their time receiving information. The modem in the Minitel terminal thus operated at 1200 bit/s for reception, and 75 bit/s for sending commands back to the servers.

These sorts of solutions were useful in a number of situations where one side would be sending more data than the other. In addition to a number of "medium-speed" standards like Minitel, four US companies became famous for high-speed versions of the same concept. Microcom Systems introduced their MNP, Hayes their Ping Pong, USR had their xxx protocol, and Telebit used software to increase performance. In all of these cases the high-speed line was set to 9600 bit/s, and the low-speed line to between 75 and 300 bit/s. Each company carved out a niche in the market, Telebit was huge in the universities due to their direct support of UUCP prototols in the modem itself, Microcom became common in commercial settings, and USR was huge among BBS operators (as they could download Fidonet messages more quickly), but the Hayes standard never caught on. In all of these cases there was a well defined high-speed and low-speed direction, but such a split was not so obvious for users who were uploading and downloading files in the same session, and these solutions were rarely used by them.

Operations at these speeds pushed the limits of the phone lines, and would have been generally very error-prone. This led to the introduction of error correction systems built into the modems, made most famous with Microcom's MNP systems. A string of MNP standards came out in the 1980s, each slowing the effective data rate by a smaller amount each time, from about 25% in MNP1, to 5% in MNP4. MNP5 took this a step further, adding compression to the system, thereby actually increasing the data rate - in general use the user could expect an MNP modem to transfer at about 1.3 times the normal data rate of the modem. MNP was later "opened" and became popular on a series of 2400 bit/s modems, although it was never widespread.

Another common feature of these high-speed modems was the concept of fallback, allowing them to talk to less-capable modems. During the call initiation the modem would play a series of signals into the line and wait for the remote modem to "answer" them. They would start at high speeds and progressively get slower and slower until they heard an answer. Thus two USR modems would be able to connect at 9600 bit/s, but when another user with a 2400 bit/s modem called in, the USR would "fall back" to the common 2400 bit/s speed. Without such a system the operator would be forced to have multiple phone lines for high and low speed use.

Echo cancellation

was the next major advance in modem design. Normally the phone system sends a small amount of the outgoing signal back to the earphone, in order to give the user some feedback that their voice is indeed being sent. However this same signal can confuse the modem, is the signal it is "hearing" from the remote modem, or its own signal being sent back to itself? This was the reason for splitting the signal frequencies into answer and originate; if you received a signal on your own frequency set, you simply ignored it. Even with improvements to the phone system allowing for higher speeds, this splitting of the available phone signal bandwidth still imposed a 1/2 speed limit on modems.

Echo cancellation was a way around this problem. By using the phone system's timing, a slight delay, it was possible for the modem to tell if the received signal was from itself or the remote modem. As soon as this happened the modems were able to send at "full speed" in both directions at the same time, opening the market to a slew of 9600 bit/s bidirectional modems in the late 1980s. These earlier systems were not very popular due to their price, but by the early 1990s the prices started falling. The "breaking point" occurred with the introduction of the SupraFax 14400 in 1991, which cost the same as a 2400 bit/s modem from a year or two earlier (about $300US), but ran at the latest 14,400 bit/s speed (14.4 kbit/s) and also included fax capability. Over the next few years the speed increased to 28.8 kbit/s, then to 33.6 kbit/s, along with a slew of one-off non-standards like AT&T's 19.2 kbit/s system.

The last major advance in modem design was the 56k standard, introduced in the late 1990s. This standard is similar to the earlier high-speed/low-speed systems rejected by users in the 1980s, but with the increasing use of the internet, which is largely "read only", the small sacrifice for higher speeds made sense once again.

The pace of these introductions follows the computer market's fairly well. 1200 bit/s was introduced by Bell in the 1960s, but 300 bit/s remained the most common speed into the late 1970s due to the high cost of a 1200 bit/s modem. The August 1982 issue of Creative Computing has an advertizement for a "super-low price" 300 bit/s modem at $99, while the same issue has 1200 bit/s modems at over $300. By 1988 2400 bit/s modems were under $300, and the SupraModem 144 was introduced at the price in 1992. Today a 56k modem is priced at under $50, the majority of which represents the box, manual and markup. The original 300 bit/s system is considered the "ultimate fallback" today, although it's unlikely anything below 2400 bit/s would actually work.

Description

Narrowband

A standard modem of today is what would have been called a "smart modem" in the 1980s. They contain two functional parts: an analog section for generating the signals and operating the phone, and a digital section for setup and control. This functionality is actually incorporated into a single chip, but the division remains in theory.

In operation the modem can be in one of two "modes", data mode in which data is sent to and from the computer over the phone lines, and command mode in which the modem listens to the data from the computer for commands, and carries them out. A typical session consists of powering up the modem (often inside the computer itself) which automatically assumes command mode, then sending it the command for dialling a number. After the connection is established to the remote modem, the modem automatically goes into data mode, and the user can send and receive data. When the user is finished, the escape sequence, "+++", is send to the modem to return it to command mode, and the command to hang up the phone is sent. One problem with this method of operation is that it is not really possible for the modem to know if a string is a command or data. Funny things happen when they get confused.

The commands themselves are typically from the Hayes command set, although that term is somewhat misleading. The original Hayes commands were useful for 300 bit/s operation only, and then extended for their 1200 bit/s modems. Hayes was much slower upgrading to faster speeds however, leading to a proliferation of command sets in the early 1990s as each of the high-speed vendors introduced their own command styles. Things became considerably more standardized in the second half of the 1990s, when most modems were built from one of a very small number of "chip sets", invariably supporting a rapidly converging command set. We call this the Hayes command set even today, although in this use the terminology is misleading: the command set in question has three or four times the numbers of commands.

The 300 bit/s modems used frequency-shift keying to send data. In this system the stream of 1's and 0's in computer data it translated into sounds which can be easily sent on the phone lines. In the Bell 103 system the originating modem sends 0's by playing a 1070 Hz tone, and 1's at 1270 Hz, wih the receiving modem putting its 0's on 2025 Hz and 1's on 2025 Hz. These frequencies were chosen carefully, they are in the range that suffer minimum distortion on the phone system, and also are not harmonics of each other. In early systems the choice of answer or originate was selected by a switch on the front of the modem, but as time went on the Smartmodems would assume original if asked to dial, and answer if asked to answer the phone.

In the 1200 bit/s and faster systems, phase-shift keying was used. In this system the two tones for any one side of the connection are sent at the similar frequencies as in the 300 bit/s systems, but slightly out of phase. By comparing the phase of the two signals, 1's and 0's could be pulled back out, for instance if the signals were 90 degrees out of phase, this represented two digits, "1, 0", at 180 degrees it was "1, 1". In this way each cycle of the signal represents two digits instead of one, 1200 bit/s modems were, in effect, 600 bit/s modems with "tricky" signalling.

It was at this point that the difference between baud and bit per second became real. Baud refers to the signaling rate of a system, in a 300 bit/s modem the signals sent one bit per signal, so the data rate and signalling rate was the same. In the 1200 bit/s systems this was no longer true, the modems were actually 600 baud. This led to a series of flame wars on the BBS's of the 80s.

Increases in speed since then have invariably used more pairs of such low-speed signals for each side of the conversation, with 2400 bit/s modems using two pairs for each side, and 9600 bit/s eight pairs. There is a limit to how far this can be taken, eventually the signals will start to overlap and the system stops working. This limit is around 33.6 kbit/s, which became possible due more to improvements in the underlying phone system than anything in the technology of the modems themselves.

Software is as important to the operation of the modem today as the hardware. Even with the improvements in the performance of the phone system, modems still lose a considerable amount of data due to noise on the line. The MNP standards were originally created to automatically fix these errors, and later expanded to compress the data at the same time. Today's v.42 and v.42bis fill these roles in the vast majority of modems, and although later MNP standards were released, they are not common.

With such systems it is possible for the modem to transmit data faster than it's basic rate would imply. For instance, a 2400 bit/s modem with v.42bis can transmit up to 9600 bit/s, at least in theory. One problem is that the compression tends to get better and worse over time, at some points the modem will be sending the data at 4000 bit/s, and others at 9000 bit/s. In such situations it becomes necessary to use hardware flow control, extra pins on the modem-computer connection to allow the computers to signal data flow. The computer is then set to supply the modem at some higher rate, in this example at 9600 bit/s, and the modem will tell the computer to stop sending if it cannot keep up. A small amount of memory in the modem, a buffer, is used to hold the data while it is being sent.

Almost all modern modems also do double-duty as a fax machine as well. Digital faxes, introduced in the 1980s, are simply a particular image format sent over a high-speed (9600/1200 bit/s) modem. Software running on the host computer can convert any image into fax-format, which can then be sent using the modem. Such software was at one time an add-on, but since has become largely universal.

A Winmodem or Softmodem is a stripped-down modem for Windows that replaces tasks traditionally handled in hardware with software. In this case the computer's built-in sound hardware is used to generate the tones normally handled by the analog portion of the modem. A small piece of hardware is then used to connect the sound hardware to the phone line. Modern computers often include a very simple card slot, the communications/networking riser slot (CNR), to lower the cost of connecting it up. The CNR slot includes pins for sound, power and basic signalling, instead of the more expensive PCI slot normally used. One downside of the Winmodem system is that the software generating the modem tones is not that simple, and the performance of the computer as a whole suffers when it is being used. For online gaming this can be a real concern.

Today's modern audio modems (ITU-T V.92 standard) closely approach the Shannon capacity of the PSTN telephone channel. They are plug-and-play fax/data/voice modems (broadcast voice messages and records touch tone responses).

Broadband

ADSL modems are also a kind of modem, the main difference being that they are not limited to the "voiceband" audio frequencies carried over the telephone line. Recent ADSL modems use coded orthogonal frequency division modulation.

Cablemodems are also a kind of modem, this time using a range of frequencies originally intended to carry RF television channels. Multiple cable modems attached to a single cable can use the same frequency band, using a low-level media access protocol to allow them to work together within the same channel. Typically, 'up' and 'down' signals are kept separate using frequency division multiplexing.

Nowadays, are beginning to appear new types of broadband modems, like doubleway satellite and powerline modems.

Internet access

Modems are the most popular means of Internet access, UCLA 2001 study of American Internet users shows that 81.3% of them use telephone modem, and 11.5% cablemodem, an order of magnitude more than any other method.

See also

56k line, flat rate, modulation (for a fuller list of modulation techniques), TCP-IP, digital to analog converter